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Summary 
 
A new deep-learning (DL) approach for approximating the inverse of the Hessian as part of least-squares 

migration is proposed. This approach aims to compute complex non-linear non-stationary matching 

filters in the form of a convolutional neural network. This choice is motivated by the similarities between 

the conventional least-squares filtering method and DL methods. The aim is to train the network using 

a random selection of overlapping patches extracted from two migrated images that theoretically embed 

the effects of the Hessian. 
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A deep learning inverse Hessian for least-squares migration  
 
Introduction 

 
Least-squares migration is a well-established method for improving the quality of seismic images. The 
least-squares formulation involves the inversion of the Hessian operator which, even in an iterative 
approach, is expensive. Therefore, the inverse Hessian is often approximated using less expensive 
methods. For example, Rickett et al., (2003) proposed a simple scaling operator to approximate the 
inverse Hessian with a diagonal matrix. Guitton (2004) extended this approach, approximating the 
inverse Hessian with a bank of non-stationary matching filters, while Kaur et al. (2020) adopted a deep 
learning technique using generative adversarial networks.  
 
In this paper, we propose a new deep-learning (DL) approach for approximating the action of the inverse 
Hessian. This approach aims to compute complex non-linear non-stationary matching filters in the form 
of a convolutional neural network. This choice is motivated by the similarities between the conventional 
least-squares match filtering method and DL methods. The aim is to train the network using a random 
selection of overlapping patches extracted from two migrated images that theoretically embed the 
effects of the Hessian. We recently developed a supervised convolutional autoencoder (SCAE) network 
for the adaptive subtraction of predicted multiples from the input recorded data (Kumar et al., 2021). 
Here, we exploit a similar concept to estimate the non-stationary Hessian as part of image-domain least-
squares migration. We show the uplift in results using a 3D network over a 2D network and a 3D 
conventional least-squares filtering method. 

 
Method 
 
Given seismic data d and a linear modeling operator L, the migration operator is described as the adjoint 
of the modeling operator such that, 
 H

1m = L d ,  (1) 
where, H denotes Hermitian transpose. This is a conventional migration image which is relatively 
inexpensive to compute, but limited in resolution, amplitude fidelity and frequency content. These 
limitations can be substantially overcome using least-squares inversion. The least-squares estimate m̂
of the model in (1) is given by, 

   1
ˆ H H

m = L L L d ,  (2) 

where HL L  is the Hessian operator. The inverse of the Hessian is regarded as a deconvolution operator 
(Hu et al., 2001) that corrects the amplitudes and frequency content of the final image. Guitton (2004) 

proposed an idea to approximate the inverse of the Hessian   1H 
L L through a bank of non-stationary 

matching filters. He rewrote equation (2) by replacing HL d  term with 1m  to obtain, 

   1

1
ˆ H 

m = L L m   (3) 

where, m̂  and   1H 
L L  are unknown. However, to find an approximation of the inverse Hessian with 

non-stationary matching filters, two known images are needed that are related by the Hessian. This can 
be achieved by remodeling the data from 1m  with L  and then remigrating with HL  to get second image, 

2 1
Hm L Lm , from which we see the inverse Hessian satisfies, 

   1

1 2
H 

m = L L m .  (4) 

This is very similar to equation (3) except 1m  and 2m  are known images. Now the inverse of the 

Hessian can be approximated by matching filters that will map 2m  to 1m  in equation (4). These filters 

can then be applied to 1m  to approximate m̂  in equation (2). This approach has now become 
widespread in order to improve the migrated image at much lower cost than an iterative least-squares 
migration. Several authors have developed methods to achieve improved approximations of the inverse 
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Hessian either to enhance the image quality or to use as a preconditioning filter at each least-squares 
iteration (Aoki, 2009). 
 
Recently, we have worked on a DL method for the adaptive subtraction of predicted multiples from 
input recorded data (Kumar et al., 2021). We developed a SCAE network architecture that involved 
training using a random selection of patches from shot/channel gathers followed by the application of 
the trained network to the rest of the dataset. The use of deep-learning networks to perform adaptive 
subtraction provides significant uplift compared to conventional approaches thanks to complex non-
linear matching filters. The same idea can be applied to match 2m to 1m  in order to find a better 
approximation of the inverse Hessian than conventional least-squares match filtering. We may write the 
new equation for the SCAE filters by replacing the conventional match filtering with the SCAE acting 
on the second image, 2m , in equation (4) as, 
 1 2SCAE( )m = m .  (5) 
Once the network has been trained using (5), it can be applied to the first image, 1m , to get the final 

estimate of the least squares migrated image m̂  in the manner of equation (3) using, 
 1ˆ SCAE( )m = m . (6) 
 
Network architecture  
 
Our design proceeded by experimentation and recognising that the non-linear nature of the network 
architecture meant that the training would, at best, end up in a useful local, rather than global, loss 
function minimum (Kumar et al., 2021). Our final SCAE network is shown in Figure 1. It has a total of 
9 layers (including the bottleneck) with the number of feature maps shown in each layer. The input and 
output layers reflect the patch sizes (6464 samples) and the latent representation in the bottleneck has 
1414 samples per feature map. We found that the best results were obtained using a convolutional 
filter size of 44. The output channels of each layer were passed through a non-linear activation function 
called an exponential linear unit (ELU).  We used the same network architecture with one extra 
dimension in all layers for the 3D SCAE.  

Figure 1 The network architecture of our supervised convolutional autoencoder (SCAE). 
 
Results 

 
We demonstrate the application of the proposed approach to a field data example from offshore Gabon. 
The data were migrated using reverse time migration ( max 33Hzf  ) to compute the first image 1m

(Figure 2a), then modelled and remigrated to get the second migrated image, 2m (Figure 2b). Adjoint 
operators were used to perform the modeling and migration steps. However, although the operators are 
kinematically correct, the amplitude fidelity and frequency content are affected by the acquisition 
geometry and migration, as anticipated. For example, the second migrated image 2m  has lower 
amplitudes in the shallow section.  
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Using these two images 1m  and 2m , we derived three different approximations of the inverse Hessian: 
1) 3D windowed least-squares match filters (“3D match”), 2) 2D SCAE filters, and 3) 3D SCAE filters.  
We first applied the resulting filters to 2m (shown in Figure 3). To demonstrate how well each method 

performed we show the residual error 2 1  r f m m  in Figure 4. A quantitative measure of the residual, 

1|| || / || ||r m  is annotated on each residual panel. Although, all three methods have performed well to 

approximate the inverse Hessian, both of the DL approaches were slightly better than the 3D match, 
with the 3D SCAE being marginally better than the 2D SCAE. In this instance, 50 percent of the total 
data were used for the training, although even better results are possible with greater exposure to more 
data. 

 
Figure 2 a) First migrated image obtained using RTM; b) second migrated image obtained using 

remodeling and remigration exercise. 
 

Finally, we applied the same sets of filters to the first image, 1m , to produce the estimated final image 

m̂  for each of the 3 approaches. The results are shown in Figure 5. All versions show an improved 
resolution and amplitude consistency compared to the initial migration, 1m  (Figure 2a). The amplitudes 
appear slightly more consistent in the DL results than in the 3D match result, especially in the area 
indicated by the yellow arrows and the yellow circle. 
 
Conclusions 
 
We have presented a new method of approximating the inverse Hessian operator as part of least-squares 
migration. The method is based on a deep learning approach that is trained to find a transfer function 
between a migrated image that has had the Hessian applied and the initial migrated image. It is trained 
using a subset of the image volumes and then applied to the whole migrated image. The field data 
example demonstrates the effectiveness of the proposed approach. Results show that the 3D network 
performs slightly better than the 2D network and they both outperform a 3D least-squares match filtering 
method.  
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Figure 3 Results of applying matching filters to the second migrated image. a) using 3D match; b) 

using a 2D SCAE network; c) using a 3D SCAE network. 
 

 
Figure 4 Residual error between the first migrated image (Figure 2a) and the second migrated image 

after the application of matching filters (Figure 3). 
 

 
Figure 5 Final migrated images after the application of matching filters and SCAE filters on the first 

migrated image (Figure 2a). 
 


